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Abstract. In this lecture we will talk about some key points concerning the concept
of convex geometry and analysis. We talk about convex sets and functions and their
geometric interpretations and properties. That when a function is not necessarily dif-
ferentiable at certain points, we can at least talk about their “subdifferentiability”—a
notion that is more general thatn differentiation. Having discussed these concepts, we
intoduce the Legendre-Fenchel transform, an important concept in the theory of convex
optimization. Then towards the end we tie these concepts together to discuss opti-
mal transport, an important convex optimization problem that is applicable in several
branches of math such as analysis, Riemannian geometry, probability, and statistics.

1. Introduction

Convexity either of a set or a function, has the following two important notions: (1)
and (2).
Let Ω ⊂ Rd be a convex and open subset and f : Ω → (−∞,+∞]. Convexity of a
function f is

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ∀ x, y ∈ Ω (1)

and

∇2f(x) ≥ 0 ∀x ∈ Ω. (2)

The latter one is called the Hessian and it is a matrix.
While convexity of a setK is: given any two distinct points x, y ∈ K, their line segment

connecting x and y,

[x, y] := (1− t)x+ ty ∈ K ∀ 0 ≤ t ≤ 1.

The latter can be interpreted as a geometrical notion, while the former analytical. (Here
provide pictures to reference the latter—and later the tangent line being below the graph
of f for (1)). The notion of convexity can help us determine extremal values of a “convex”
function.

1.1. Motivating example coming from Discrete optimal transport. First let us
put the example of the problem we want to solve; then give it an applicable interpretation.
To that end, consider the discrete spaces X = {1, 2, . . . , n} and Y := {1, 2, . . . ,m}; where
n,m are positive integers. We want to investigate what would be the “cost” of moving
mass at location x to location y. Allowing the mass to split, the transportation occurs
under a plan π defined on X × Y that tells you how much mass is transported from an
initial location (the source) to a final one (the target).
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As an example, suppose we have an Amazon warehouse at location x = 0 with 1 unit of
resource and distribution centers at y = 0, 1 receiving 1/3 and 2/3 units of the resources,
respectively. To wit, the plan is such that the resources that we have at x = 0, 1/3 of
it goes to y = 0, while 2/3 goes to y = 1. This means π(0, 0) = 1/3, π(0, 1) = 2/3, and
π(0,R) = 1. In general, if A ⊂ X and B ⊂ Y , π(A,B) measures how much mass is
transported from A to B. Let us state the problem of optimizing the transportation cost
under the plan constraint more precisely.

Let µ and ν be vectors in the set

Pd :=

{
ω ∈ Rd : ω ≥ 0,

∑
i=1

ωi = 1

}
. (3)

Given matrix cij ∈ Rn×m, the problem is

min
π∈Rn×m

n∑
i=1

m∑
j=1

πijcij

subject to constraints π ≥ 0
m∑
j=1

πij = µi ∀i

n∑
i=1

πij = νj ∀j.

(4)

Notice that we are minimizing over a convex set

Πij :=

{
µ ∈ Pn, ν ∈ Pm :

n∑
i=1

πij = νj,
m∑
j=1

πij = µi ∀(i, j)

}
(5)

Hence, the problem is feasible. The dual problem to (4), is thus

max

{
n∑

i=1

ϕiµi +
m∑
j=1

ψjνj : cij ≥ ϕi + ψj ∀(i, j)

}
. (6)

We will prove that, assuming that the primal and dual have exactly one extremal point,
show that the optimal value of the primal (minimization problem) and dual objectives
coincide. [ The proof will be done after going over the necessary mathematical machinery]

Proof. Let b = (µ1, . . . , µn, ν1, . . . , νm), let π = (π11, π12, . . . , π1n; π21, π22, . . . , πnm), and
let λ = (ϕ1, . . . , ϕn;ψ1, . . . , ψm) be the Lagrangian multipliers. The constraints that the
matrix (πij)i.j ought to satisfy are

n∑
i=1

πij = νj ∀j and
m∑
j=1

πij = µi ∀i

Then the Lagrange function is given by
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Λ(πij, ϕi, ψj) :=
n∑

i=1

m∑
j=1

πijcij −
n∑

i=1

ϕi

[
m∑
j=1

πij − µi

]
−

m∑
j=1

ψj

[
n∑

i=1

πij − νj

]

=
n∑

i=1

ϕiµi +
m∑
j=1

ψjνj +

n,m∑
i,j=1

(cij − ϕi − ψj)πij

The dual functional can be defined by the minimum of Λ over the πi,j:

D(ϕi, ψj) := min
πij

Λ(πij, ϕi, ψj) = min
πij≥0

{
n∑

i=1

ϕiµi +
m∑
j=1

ψjνj +

n,m∑
i,j=1

(cij − ϕi − ψj)πij

}
.

In particular,

D(ϕi, ψj) =

{ ∑n
i=1 ϕiµi +

∑m
j=1 ψjνj if cij − ϕi − ψj ≥ 0

−∞ otherwise

Adding the constraint of ϕi + ψj ≤ cij for all (i, j) to the dual problem, we acquire

D(ϕi, ψj) = max

{
n∑

i=1

ϕiµi +
m∑
j=1

ψjνj : cij ≥ ϕi + ψj ∀(i, j)

}
.

The Lagrange multiplier function Λ(π;ϕ, ψ) can be rewritten

Λ(π;ϕ, ψ) = ⟨c, π⟩ − ϕ⊺(πI− µ)− ψ⊺(π⊺I− ν),

where ⟨·, ·⟩ indicates the Euclidean inner product on Rn and I the vector consisting of
all ones. Taking the gradient of the Lagrangian with respect to π, shifting to vector
notation, yields

0 = ∇xΛ(π;ϕ, ψ) = c− ϕI⊺ − Iψ⊺.

The Karush-Kuhn-Tucker infers that x is a critical point for minimizing Λ(π;ϕ, ψ) when-
ever there exist multipliers ϕ and ψ such that 0 = ∇πΛ(π;ϕ, ψ). To this end, say π∗

is a critical point of Λ(π;ϕ, ψ) for which c − ϕI⊺ − I⊺ψ = 0. Substituting this into the
Lagrange multiplier function Λ, we get

Λ(πij;ϕi, ψj) =
n∑

i=1

ϕiµi +
m∑
j=1

ψjνj.

The constraint A⊺λ ≤ c turns out to be ϕi + ψj ≤ cij for which we have let b =
(µ1, . . . , µn, ν1, . . . , νm) be in Rn×Rm andA⊺ =

∑m,n
j,i=1 πji and λ := (ϕ1, . . . , ϕn;ψ1, . . . , ψm) ∈

Rn × Rm the Lagrange multipliers. □

Remark 1.1. That (5) is convex follows easily from the following computation. Firtly,
notice that Πij ̸= ∅. Just simply take the sum πij = µi + νj for all (i, j), which is in Πij.
That Πij is convex, let Tij and Sij for all (i, j) be members of Πij. Then∑

j

Tij = µi,
∑
i

Tij = νj ∀(i, j) and
∑
j

Sij = µi,
∑
i

Sij = νj ∀(i, j).
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We have to show that Rij := (1 − t)Sij + tTij for all 0 ≤ t ≤ 1 belongs to Πij. To this
end, ∑

i

Rij = (1− t)
∑
i

Sij + t
∑
i

Tij

= (1− t)νj + tνj

= νj ∈ Πij ∀j.
Similarly, ∑

j

Rij = (1− t)
∑
j

Sij + t
∑
j

Tij

= (1− t)µi + tµi

= µi ∈ Πij ∀i.

Therefore, Rij ∈ Πij for all (i, j).

Remark 1.2. The solution above shows that one can recover the relation

max

{
n,m∑
i,j=1

bi,jyi,j : Ay ≤ c

}
= min

{
n,m∑
i,j=1

ci,jπi,j : Aπ = b; π ≥ 0

}
.

The KKT conditions of the minimization problem above were used to solve for the mul-
tipliers of the maximization one.

The computation above, in the discrete setting, belongs to the more general mathemat-
ical theory of Fenchel-Rockafellar duality or the Legendre-Fenchel transform. In short,
this means that given a convex function φ : Ω → (−∞,+∞], the Legendre-Fenchel
transform of φ is the function φ∗, and it is defined by

φ∗(z∗) := max
z∈Rn

{⟨z∗, z⟩ − φ(z)}. (7)

2. Convex sets

Before we define what a convex set is, we need some preliminary set up to set the
stage. Let Rn be the Euclidean space, and the usual vector space of real n-tuples x =
(x1, x2, . . . , xn). The (Euclidean) inner product of two vectors x and y is defined by

⟨x, y⟩ = x1y1 + · · ·+ xnyn.

Furthermore, we obtain some properties.

Proposition 2.1. Given x, y, and z in Rn, we have
(1)

⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0iff x = 0.

(2) ⟨x, y⟩ = ⟨y, x⟩
(3) ⟨λx, y⟩ = λ⟨x, y⟩ (λ ∈ R)
(4) ⟨x+ z, y⟩ = ⟨x, y⟩+ ⟨z, y⟩
(5) Euclidean norm:
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∥x∥ =
√
⟨x, x⟩

=
√
x21 + · · · x2n.

Moreover, for any x, y ∈ Rd,
(6) ∥x∥ ≥ 0, ∥x∥ = 0 iff x = 0.
(7) ∥λx∥ = |λ|∥x∥ (λ ∈ R).
(8) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (Triangle inequality)
(9) |⟨x, y⟩| ≤ ∥x∥ ∥y∥ (Cauchy-Schwartz).

We are now prepared to define a convex set.

Definition 2.2. A subset K of Rn is convex if

(1− λ)x+ λy ∈ K

whenever x, y ∈ K and λ ∈ [0, 1].

From this definition we can se the following. For any x, y ∈ Rn, the line segment
connecting x to y is defined by

[x, y] := {(1− λ)xλy : 0 ≤ λ ≤ 1}.

Notice that if λ = 0, then (1 − λ)x + λy = x; when λ = 1, (1 − λ)x + λy = y; when
λ = 1

2
, (1− λ)x+ λy = x+y

2
—the midpoint of the interval connecting x and y.

Remark 2.3. A subset K of Rn is convex iff the line segment connecting x and y, [x, y] ⊂
K, whenever x, y ∈ K.

Examples. 1. Let K := {x ∈ Rn : ∥x∥ ≤ 1}. To show that K is convex, fix any
x, y ∈ K, λ ∈ (0, 1). Then

∥x∥ ≤ 1, ∥y∥ ≤ 1.

An application of Proposition 2.1 (8) and (7) show

∥(1− λ)x+ λy∥ ≤ ∥(1− λ)x∥+ ∥λy∥
≤ (1− λ)∥x∥+ λ∥y∥
≤ 1− λ+ λ = 1.

Therefore, we can see that (1− λ)x+ λy ∈ K, and consequently, K is a convex set.

2. Given any v ∈ Rn, define the set

K := {x ∈ Rn : ⟨v, x⟩ ≤ r, r ∈ R}. (8)

Then K is a convex set. Indeed, fix any x, y ∈ K, λ ∈ (0, 1). Then, by definition

⟨v, x⟩ ≤ r, ⟨v, y⟩ ≤ r.
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Then according to Proposition 2.1 (2)-(4)

⟨v, (1− λ)x+ λy⟩ = ⟨(1− λ)x+ λy, v⟩
= ⟨(1− λ)x, v⟩+ ⟨λy, v⟩
= (1− λ)⟨x, v⟩+ λ⟨y, v⟩
= (1− λ)⟨v, x⟩+ λ⟨v, y⟩
= (1− λ)r + λr = r.

But this says that the line segment (1−λ)x+λy belongs in K. So therefore, K is convex.

2.1. Algebra of Convex sets. Next, we want to talk about some convex sets operations.
For starters, if C is a convex subset of Rn, then convexity of such set is invariant under
translation and scalar multiplication. Namely, every translate C + a (a ∈ R) and scalar
multiple λC + {λz : z ∈ C} are convex as well. ( exercise).

Let K1 and K2 be convex subsets of Rn. Define the product set of convex sets as

K1 ×K2 := {(k1, k2) : k1 ∈ K1, k2 ∈ K2} ⊂ Rn × Rn. (9)

Proposition 2.4. If K1 is a convex set in Rn and K2 is a set in Rn, then K1 ×K2 is a
convex set.

Proof. Let K := K1 × K2. We wish to show K is convex. To this end, fix any w =
(w1, w2) ∈ K and z = (z1, z2) ∈ K2. Then, we see that

w1, z1 ∈ K1, and w2, z2 ∈ K2.

For any λ ∈ (0, 1), we have that

(1− λ)w + λz = (1− λ)(w1, w2) + λ(z1, z2)

= ((1− λ)w1, (1− λ)w2) + (λz1, λz2)

= ((1− λ)w1 + λz1, (1− λ)w2 + λz2) ∈ K

by noticing that (1 − λ)w1 + λz1 ∈ K1 and (1 − λ)w2 + λz2 ∈ K2. Consequently, K is
convex. □

Affine sets. Let A be an n×m matrix and b ∈ Rn. Define

B(x) := Ax+ b, x ∈ Rm.

Note that Ax is a n× 1 matrix, then B : Rm → Rn. So B(x) is called an affine mapping.
I.e., a sum of a linear mapping with a constant. (Pictures: line y = 2x + 1). The goal
here is to show that convexity of sets is preserved under the mapping B.

Proposition 2.5. Let B : Rm → Rn be an affine mapping.
(1) If K ⊂ Rm is convex then the image

B(K) := {B(x) : x ∈ K}
is a convex set in Rn.
(2) If E is convex set in Rn, then the inverse image

B−1(E) := {x ∈ Rm : B(x) ∈ E}
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is convex.

Proof. (1) Fix any a, b ∈ B(x) and 0 < λ < 1. Then we have

B(x) = a for some x ∈ K B(z) = b for some z ∈ K.

Then

(1− λ)a+ λb = (1− λ)B(x) + λB(z)

= (1− λ)(Ax+ b) + λ(Az + b)

= A((1− λ)x+ λz) + b

= B((1− λ)x+ λz) ∈ B(K),

since (1− λ)x+ λz ∈ K.
Part (2) exercise. □

2.2. More properties of Convex sets. Consider two convex subsets C1 and C2 of Rn.
The sum of such sets C1 and C2 is denoted and defined by

C1 + C2 := {x1 + x2 : x1 ∈ C1, x2 ∈ C2}. (10)

The first result says that the sum of two convex sets is convex.

Theorem 2.6. If C1 and C2 are convex subsets of Rn, then so is their sum, C1 + C2.
Moreover, if α ∈ R, αC := {αx : x ∈ C} is convex.

Proof. Let x and y be two points in C1 + C2. Then, there exist vectors x1, y1 ∈ C1 and
x2, y2 ∈ C2 such that

x = x1 + x2 and y = y1 + y2.

For λ ∈ (0, 1), we have

(1− λ)x+ λy = [(1− λ)x1 + λy1] + [(1− λ)x2 + λy2];

and b the convexity of C1 and C2, we have

(1− λ)x1 + λy1 ∈ C1 and (1− λ)x2 + λy2 ∈ C2.

This says (1− λ)x+ λy ∈ C1 + C2.
The second conclusion is done in exercises. □

Next, we discuss a very important concept in convex analysis.
Let w1, . . . wn be elements on Rn. An element x of Rn is called an convex combination

of w1, . . . wn if

x =
n∑

i=1

λiwi,

where λi ≥ 0 and
∑n

i=1 λi = 1.
Example. Take x = 1

3
w1 +

1
3
w2 +

1
3
w3 is a convex combination of w1, w2, and w3. We

can see this from the definition given. Each λi =
1
3
≥ 0 for i = 1, 2, 3. This example

forms what is called an n = 3-symplex.

Proposition 2.7. A subset C of Rn is convex iff it contains all convex combinations of
its elements.
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Proof. Suppose firstly that C contains all convex combinations of its elements. Our goal
is to show that C is convex. Fix any x, y ∈ C and λ ∈ (0, 1). Then (1 − λ)x + λy.
Denoting λ1 = λ and 1 − λ = λ2, then clearly λ1, λ2 ≥ 0 and their sum λ1 + λ2 = 1.
Therefore, (1− λ)x+ λy ∈ C, since it is a convex combination of x, y ∈ C. Therefore, C
is convex.

For the converse, simply take any finite set {w1, w2, . . . , wk} ⊂ C and parameters
λ1, . . . , λk ≥ 0 with λ1+λk = 1 then λ1w1+ · · ·+λkwk must be contained in C: this can
be seen by induction on k and using

λ1w1 + · · ·+ λkwk = (1− λk)

(
λ1

1− λk
w1 + · · ·+ λk−1

1− λk
wk−1

)
+ λkwk for λk < 1.

□

Last concept of convex set. Every intersection of convex sets is convex, and Rn is
convex. Thus, we have

Definition 2.8. For any C ⊂ Rn, the “smallest” convex set containing C is called the
convex hull of C, and can be constructed as the intersection of all convex sets that contain
C:

conv(C) :=
⋂

{K ⊂ Rn : C ⊂ K, K is convex}

3. Convex functions

In this lecture we discuss convex functions.

Definition 3.1. Let f : Rn → R ∪ {±∞} be a function. f is called convex if it holds

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ∀x, y ∈ Rn λ ∈ (0, 1).

*Graph* a convex function.
No we discuss some basic properties of convex functions.
Let f : Rn → (−∞,+∞] be a convex function. We define the domain of f is defined

by

dom(f) := {x ∈ Rn : f(x) < +∞}. (11)

The epigraph of f is the set

epi(f) := {(x, µ) ∈ Rn × R : µ ≥ f(x)}. (12)

Examples. 1. Take f : R → (−∞,+∞] be given as

f(x) =

 0 |x| ≤ 1
+∞ o.w (13)

*graph*: the domain of f is (−1, 1), while epif is the swet–shaded region between x = −1
and x = 1, and x ≥ 0. Hence,

dom(f) = [−1, 1], epi := [−1, 1]× [0,∞).
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Proposition 3.2. Let f : Rn → (−∞,∞].
(1) If f is convex, then the doman of f is convex as well.
(2) f is convex iff

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ∀x, y ∈ dom(f) ∀λ ∈ (0, 1).

Remark 3.3. The difference between the definition of convexity and (2) is we only require
that the above inequality be true for x, y in dom(f), instead of the whole Euclidean space
Rn.

Proof. The first thing that we wish to prove is (1): to show that dom(f) is a convex in the
sense of the previous section. To this end, suppose f is convex (as definition suggests).
Fix any x, y ∈ dom(f), λ ∈ (0, 1). Then by definition of the domain of f , we have that
f(x) <∞ and f(y) <∞. Then

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) <∞.

Moreover, by the definition, so (1− λ)x+ λy ∈ dom(f). Therefore, dom(f) is convex.

(2) Exercise. Hint, if f is convex, then the inequality is true for x, y ∈ dom(f) λ ∈
(0, 1). As dom(f) ⊂ Rn. For the other direction, suppose the inequality holds true for
the conditions. Taking any x, y ∈ Rn. If x, y are in the domain of f , then the result
holds. On the other hand if x, y fail to be in dom(f); in this case, say x /∈ dom(f), then
f(x) = +∞. Then the right hand side of the inequality is +∞ which is always ≥ the left
hand side. □

3.1. Geometric Characterization for Convex function. We look at the epi graph,
namely if the epi graph of f is convex then automatically f is convex.

Proposition 3.4. Let f : Rn → (−∞,∞] be a convex function. Then f is convex iff
epi(f) ⊂ Rn × R = Rn+1 is convex.

Proof. First suppose that f is convex. We have to show that epi(f) ⊂ Rn+1 is a convex
set. Fix (x, µ), (y, ν) ∈ epi(f), and λ ∈ (0, 1). Then

f(x) ≤ µ, f(y) ≤ ν.

We have, then,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

≤ (1− λ)µ+ λν.

This means that, by definition of the epigraph of f ,

((1− λ)x+ λy, (1− λ)µ+ λν) ∈ epi(f).

We see this from the following simplification:
((1− λ)x + λy, (1− λ)µ + λν) = (1− λ)(x, µ) + λ(y, ν) which is in epi(f). Hence, epif
is convex.

Conversely, suppose that epif is convex. Fix any x, y ∈ dom(f) and λ ∈ (0, 1). We
shall show that

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).
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We have f(x) < ∞ and (x, f(x)) ∈ epi(f) (denoting f(x) = µ). Similarly, (y, f(y)) ∈
epi(f). Then

(1− λ)(x, f(x)) + λ(y, f(y)) ∈ epi(f).

However,

(1− λ)(x, f(x)) + λ(y, f(y)) = ((1− λ)x+ λy, (1− λ)f(x) + λf(y)) ∈ epi(f);

Denoting z = (1− λ)x+ λy and τ = (1− λ)f(x) + λf(y), f(z) ≤ τ . Therefore,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

But this says that f is convex! □

The following is great example of a convexity property.

Proposition 3.5. Let f : Rn → (−∞,∞] be a convex function. Then f is convex iff for
any number λi > 0 for i = 1, 2, . . . ,m and any element xi ∈ Rn for i = 1, 2, . . . ,m with∑m

i=1 λi = 1, then

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi). (14)

Remark 3.6. Notice that from the definition convexity property of convex functions, (14)
is true for m a positive integer. when m = 2: (14) holds true if f is convex. Now we can
prove a more general property: if f is a convex function. Namely, if f is convex, then
(14) holds true for all m ∈ N. Conversely, if the inequality holds for all m ∈ N, then f
is convex.

Proof. One direction is easy. That is, if (14) holds for all m, λi > 0, and xi ∈ Rn, then
for the special case m = 2, we have

f (λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2).

But this is exactly the definition of convexity of f given in (3.1). Therefore, we need only
show that if f is convex, then (14) holds.

To that end, suppose that f is convex. Fix λi > 0, xi ∈ Rn with i = 1, 2, . . . ,m and∑m
i=1 λi = 1. According to Proposition 3.4 as f is convex, then so is epi(f). One property

taken for granted is the fact that affine subspaces can be described as the set of all affine
combinations of a finite set of points:

F :=

{
v ∈ Rn : v = λ1v1 + λ2v2 + · · ·+ λnvn, for λi > 0,

n∑
i=1

λi = 1

}
.

That is, if we take any finite number of points in the convex set—epi(f)—then any
convex combination of those points will remain inside the convex set. Now we can assume
without loss of generality that xi ∈ dom(f) for all i = 1, . . . ,m. Since, if not xi /∈ dom(f),
then f(xi) = ∞, and thus the right hand side of (14) is ∞ which is greater than or equal
to the left hand side and Jensen inequality is satisfied. Then as x ∈ dom(f) we see that

(xi, f(xi)) ∈ epi(f) ∀i.
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Since we know that epi(f) is convex, then the convex combination
m∑
i=1

λi(xi, f(xi)) ∈ epi(f)

Furthermore, we can rewrtie this as follows
m∑
i=1

λi(xi, f(xi)) =

(
m∑
i=1

λixi,

m∑
i=1

λif(xi)

)
:= (z, τ) ∈ epi(f).

The definition of the epigraph of f tells you that f(z) ≤ τ . But this is

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi) ∀m

□

4. Subdifferential

We start the section by discussing the subgradient of a convex function. In calcu-
lus we study the derivatives of differentiable functions, but what happens when we en-
counter functions that are not differentiable? In optimization problems, finding extremal
points is important. Nondifferentiable functions happen to arise in many areas of applied
mathematics and is germane to optimization. For example, the absolute value function,
f(x) = |x| is not differentiable at x = 0—we have a corner there. However, we can talk
about its (sub)tangent line at x = 0 that falls under the graph of |x|. The subtlety is that
there are infinitely many options for such a “subtangent” line. To wit, unlike calculus, a
convex function with a “corner point” can have variable slopes.

*graph* a general function with corners and give geometrical intuition regarding the
subgradient and subdifferential.

Definition 4.1. Let f : Rn → (−∞,∞] be a convex function and let z ∈ dom(f). A
vector v ∈ Rn is a subgradient of f at z if

⟨v, x− z⟩ ≤ f(x)− f(z) ∀x ∈ Rn. (15)

The collection of all subgradients of f at z is called the subdifferential of f at z. It is
denoted by ∂f(z).

Notice that the subdifferential consists of the slopes of “ all tangents line” to f. It is a
set-valued function. For the regular tangent line to a “smooth” curve there is one point,
whereas for the absolute value at 0, there are infinitely many “subtangent” lines to it.
Examples. (1) Take the absolute value function f(x) = |x|. First thing to notice is that
f is not differentiable at x = 0. Notice that we have options of putting a subtangent line
at x = 0. In fact, there are many ways to accomplish this, and this is what will give us
the subgradient of this function at zero.

Claim. Given f(x) = |x|, x ∈ R. Then ∂f(0) = [−1, 1].
We use the definition. Fix any v ∈ ∂f(0). Then

⟨v, z⟩ ≤ f(x)− f(z) ⇐= v(x− 0) ≤ f(x)− f(0) ⇐⇒ vx ≤ |x| ∀x ∈ R.
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Since this is true for all x, then it is true for all x = 1. In this case we have,

v · 1 ≤ |1| = 1.

The above inequality also holds for x = −1. In this case we ave,

v(−1) ≤ | − 1| = 1.

Or equivalently,

−v ≤ 1 ⇐= −1 ≤ v.

Combining this inequality with the previous one says −1 ≤ v ≤ 1. This then tells you
that ∂f(0) ⊂ [−1, 1]. To get equality, we must show the reverse inequality.

To that end, fix any v ∈ [−1, 1]. Then

|v| ≤ 1.

For any x ∈ R, we have the following

v(x− 0) = vx ≤ |vx| = |v| |x| ≤ 1 x = x ≤ |x|.

But this says

v(x− 0) ≤ |x| − |0|.
Hence, v ∈ ∂f(0), and hence [−1, 1] ⊂ ∂f(0), for which equality now follows at once.

(2) Consider the Euclidean norm: f(x) = ∥x∥, where ∥x∥ =
√
⟨x, x⟩ =

√
x21 + · · ·+ x2n.

Claim. ∂f(0) = B := {v ∈ Rn : ∥v∥ ≤ 1}, called the closed unit ball.
Fix any v ∈ ∂f(0). Then

⟨v, x− 0⟩ ≤ f(x)− f(0) = ∥x∥ ∀x ∈ Rn. (16)

This is equivalent to

⟨v, x⟩ ≤ ∥x∥ ∀x ∈ Rn. (17)

So for v = x, we have the following

⟨v, v⟩ ≤ ∥v∥ =⇒ ∥v∥2 ≤ ∥v∥.

This implies

∥v∥ ≤ 1.

If v = 0, then certainly 0 ≤ 1 or equivalently 0 ≤ 0. But this says v ∈ B. Consequently,
∂f(0) ⊂ B.

For the reverse inclusion, fix v ∈ B. Then ∥v∥ ≤ 1. Then for any x ∈ Rn,

⟨v, x− 0⟩ = ⟨v, x⟩ ≤ ∥v∥∥x∥ ≤ ∥x∥ = ∥x∥ − ∥0∥ = f(x)− f(0) ∀x ∈ Rn.

Hence, v ∈ ∂f(0), and the opposite inclusion holds, and thus we get ∂f(0) = B.
Note that both these examples involved real-values. Note that both these examples

involved real-values. In the next exercise we take into account the extended plane.
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(3) Let K be a nonempty subset of Rn. The indicator function associated with K is
defined by

δK(x) =

 0 x ∈ K
+∞ x /∈ K (18)

A few remarks are in order. The first, is that dom(δK) = K. The epi(δK) = K × [0,∞).
For any z ∈ K, ∂δK(z) = N(z,K). Here, the normal cone N(z,K) is defined by

N(z,K) := {v ∈ Rn : ⟨v, x− z⟩ ≤ 0 : ∀x ∈ K} (19)

Indeed, fix v ∈ ∂δK(z), then

⟨v, x− z⟩ ≤ δK(x)− δK(z) ∀x ∈ Rn

= δK(x) ∀x ∈ Rn.

But for any x ∈ K, we have

⟨v, x− z⟩ ≤ δK(x) = 0.

Thus, v ∈ N(z,K). So ∂δK(z) ⊂ N(z,K).

4.1. Subdifferentiable maximum rule. Given three differentiable functions fi, for
i = 1, 2, 3; that intersect each other at some points, the maximum (max for short)
defined by

f(x) := max{f1(x), f2(x), f3(x)} (20)

may not be differentiable function. In fact, consider the following example. Let f1(x) =
−x, f2(x) = 1, and f3(x) = x. These functions are clearly differentable, but their max
f(x) := max{−x, 1, x} is not. Look at the graph. Since any convex function, not neces-
sarily differentiable, can be described in terms of “subgradient” vectors, which correspond
to supporting hyperplanes to the epigraph of f , a natural question that arises is as follows.

How can we represent the subdifferential of the maximum function (20) at a point z in
terms of the subdifferential? Namely, what is

∂f(z) = ∂fi(z) for i = 1, 2, 3?

Let fi : Rn → (−∞∞] for i = 1, . . . ,m, be convex functions. Define the following
function

f(x) := max{fi(x) : i = 1, . . . ,m}.
Given z ∈ Rn, we define the active index set at a point z as follows

I(z) := {i = 1, . . . ,m : fi(z) = f(z)}.
In order to understand the active index set, we shall look at the previous example where
the functions were f1(x) = −x, f2(x) = 1, and f3(x) = x, and for z = 1. Indeed
substituting z = 1 in the functions fi(z), for i = 1, 2, 3, we get f1(1) = −1, f2(1) = 1,
and f3(1) = 1. Thus,

f(1) = max{−1, 1, 1} = 1.
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Hence, using the index set, the set that tells you where—at what index—the max was
attained, we see the following: I(1) = {2, 3}.
Let’s do another example (*n class—here good idea to ask for the wrong answer*),

where this time z = −1. Here substituting z = −1 in fi(z) for i = 1, 2, 3, we see

f(−1) = max{1, 1,−1} =⇒ I(−1) = {1, 2}.
So similarly, we can obtain the formula for computing the active index set I for any z
in the domain of the function. We will next get the main formula for this discussion.
We first have to assume that each function fi is continuous at z to obtain a formula in
order to represent the subdifferetinal of the function f in terms of the function fi for
i = 1, . . . ,m.

Suppose each fi for i = 1, . . . ,m is continuous at z, then we have the following

∂f(z) = conv

 ⋃
i∈I(x)

∂fi(z)

 .

We will look at examples to understand some computations and what the formula says in
terms of subdifferentials. In order to understand the formula, let’s return to our previous
example.

Example. Consider f1(x) = −x, f2(x) = 1, and f3(x) = x and z = 1. Since the
function fi for i = 1, 2, 3 are continuous, we can apply the formula above. Since we
already computed the active index set for z = 1, we have

I(z) = {2, 3}.
Now looking at the function

f2(x) = 1 =⇒ ∂f2(z) = {0}.
Similarly, for f3(x) = x, then

∂f3(z) = {1}.
Because of the formula above, we have

∂f(z) = conv {∂f2(z) ∪ ∂f3(z)} = {0, 1} = [0, 1].

The above construction was merely meant to see the importance of the convexity of a
function with the convex hull of a set.

5. Legendre-Fenchel Transform

We start with a graphical example to see where the Legendre-Transform “comes” from.
Consider the graph of a convex function, and look for a particular slope. In fact, we will
think, in some sense, of the slopes y as our independent variable. Let’s continue by
drawing a picture.

From the picture we get a nice formula for the y-intercept of this tangent line. It is
xy − f(x). Let’s call this g. Namely, given x, let

g(y) = xy − f(x) ∀y ∈ Rn.
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There is a relationship between y and x, namely that y = f ′(x)—the slope of f at x. Let
figure out if we can come up with some conditions for g. Since the relationship between
x and y is the derivative, one can take a derivative of xy − f(x) and set it equal to
zero. Thus, this extra condition can also be obtained from differentiating g with respect
to x and setting equal to zero. Recall that when we take derivative and set equal to
zero is done when we wish to optimize a function, i.e., when we maximize or minimize a
function. The conclusion is that this strongly resembles max or min g. In what comes
next, we will need to make use of supremum and infimum. The supremum of a set is its
least upper bound and the infimum is its greatest lower bound. But for all intents and
purposes, we can think of supremum as a maximum and infimum as a minimum provided
that our domain is closed and bounded (i.e., compact) such as [0, 1].
Since f is convex, and by definition a concave function f on Rn is a function whose

negative is convex, then we want to maximize g with respect to x (Otherwise, we would
want to minimize as it is natural to minimize a convex function over a convex set). So
we are interested in

g(y) := max
x

{xy − f(x)}.

This is the Legendre-Fenchel Transform.

Definition 5.1. Let f : Rn → (−∞,∞] be a function (not necessarily convex), then the
Legendre-Fenchel transform (or Fenchel conjugate) of f denoted by f ∗ is defined by

f ∗(y) = sup{⟨x, y⟩ − f(x) : x ∈ Rn}
= − inf{f(x)− ⟨x, y⟩ : x ∈ Rn} y ∈ Rn.

(21)

Then, f ∗ : Rn → [−∞,+∞]. From the definition (21), f ∗ can be ±∞. Let us explore
more properties of the Fenchel congujate of f . One important property that we shall
soon see is that if we assume f is not necessarily convex, with nonempty domain, then
its Fenchel congujate is always convex.

Theorem 5.2. Let f : Rn → (−∞,∞] be a function. Suppose that dom(f) ̸= ∅. This
means that there is f(z) < +∞ for z ∈ Rn. Then

f ∗ : Rn → (−∞,∞]

is a convex function.

Proof. For any y ∈ Rn, by definition we have

f ∗(y) = sup{⟨y, x⟩ − f(x) : x ∈ Rn}
≥ ⟨y, z⟩ − f(z) > −∞.

Next, we aim to show that f ∗ is actually a convex function. First notice that if x /∈
dom(f), then f(x) = ∞, and thus ⟨y, x⟩ − f(x) = −∞, and so we have

f ∗(y) = sup{⟨y, x⟩ − f(x) : x ∈ Rn} = sup{⟨y, x⟩ − f(x) : x ∈ dom(f)}
= sup{φx(y) : x ∈ dom(f) where φx(y) := ⟨y, x⟩ − f(x)}.

Note that for x ∈ dom(f), the function φx(y) is an affine function. An affine function on
Rn is a function which is finite, convex, and concave. Moreover, this f(x) can be seen as
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a constant with respect to y. Thus φx(y) resembles something like By + b, from Section
2.1. Therefore, f ∗(y) is the supremum of a family of affine functions, which is always
convex. Therefore, f ∗(y) is a convex function. □

Examples. (1) Let f(x) = 0 for all x ∈ R. Then
f ∗(y) = sup

x∈R
{xy}.

Note that f ∗(y) = 0 if y = 0. In this case, dom(f ∗) = {0}. If y ̸= 0, then f ∗(y) = {xy}
is unbounded.

(2) The same function but defined over the domain [−1, 1]. Hence

f ∗(y) = sup
x∈[−1,1]

{xy} = |y|.

This is because if y > 0, then I pick x = 1, as that is the maximum I can get. If y < 0,
then pick x = −1, that’s the biggest we can get. Now dom(f ∗) = R.

An elementary proof that f ∗ is convex follows from the definition of Definition 7.
Indeed, let x∗1, x

∗
2 ∈ dom(f ∗) and let λ ∈ (0, 1). Then be definition

f ∗((1− λ)x∗1 + λx∗2) = sup
x∈Rn

{⟨(1− λ)x∗1 + λx∗2, x⟩ − f(x)}

= sup
x∈Rn

{⟨(1− λ)x∗1 + λx∗2, x⟩ − (1− λ)f(x)− λf(x)}

≤ sup
x∈Rn

{⟨(1− λ)x∗1, x⟩ − (1− λ)f(x)}

+ sup
x∈Rn

{⟨λx∗2, x⟩ − λf(x)}

= (1− λ) sup
x∈Rn

{⟨x∗1, x⟩ − f(x)}+ λ sup
x∈Rn

{⟨x∗2, x⟩ − f(x)}

= (1− λ)f ∗(x∗1) + λf ∗(x∗2).

And this is convexity. Here we return to the convexity duality of the beginning of the
lecture.

Let us tie together the concept of the Legendre-Fenchel transform with that of subd-
ifferenitiability.

From the definition, a vector x∗ ∈ Rn of a convex function f at x ∈ Rn satisfies the
following inequality

f(z) ≥ f(x) + ⟨x∗, z − x⟩ ∀z ∈ Rn.

The collection of all x∗ is the set

∂f(x) := {x∗ : f(z) ≥ f(x) + ⟨x∗, z − x⟩ ∀z ∈ Rn}.
This set is a multivalued set and it is convex. From this definition, we have that the
following are equivalent.
1. x∗ ∈ ∂f(x)
2. ⟨x∗, z⟩ − f(z) attains its maximum value at z = x.
3. f ∗(x∗) + f(x) ≤ ⟨x∗, x⟩.
4. f ∗(x∗) + f(x) = ⟨x∗, x⟩.
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The proof is not so bad. The subgradient inequality that defines 1. can be rewritten
as

⟨x∗, x⟩ − f(x) ≥ ⟨x∗, z⟩ − f ∗(z) ∀z.
A closer look at this inequality gives you 2. Since, by definition of the Legendre-Fenchel

transform, the maximum in part 2 is f ∗(x∗), 2. equivalent to 3. or 4.
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